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Abstract

The year 1997 marked the �rst chess program to defeat a world champion, the �rst

time a mobile robotic explorer landed on another planet, and the �ctitious birthday of

HAL-9000 in the book \2001: A Space Odyssey". Autonomous Agents for space explo-

ration has been a grand challenge for AI since its inception. This paper describes the

New Millennium Remote Agent (NMRA) architecture for autonomous spacecraft con-

trol systems. The architecture supports challenging requirements of the autonomous

spacecraft domain including highly reliable autonomous operations over extended time

periods in the presence of tight resource constraints, hard deadlines, limited observ-

ability, and concurrent activity. A hybrid architecture, NMRA integrates traditional

real-time monitoring and control with heterogeneous components for constraint-based

planning and scheduling, robust multi-threaded execution, and model-based diagnosis

and recon�guration. Novel features of this integrated architecture include support for

robust closed-loop generation and execution of concurrent temporal plans and a hybrid

procedural/deductive executive.

NMRA will be demonstated as an onboard controller for Deep Space One (DS-

1), the �rst ight of NASA's New Millennium Program (NMP), which will launch in

1998. As the �rst AI system to autonomously control an actual spacecraft, NMRA

will enable the establishment of a \virtual presence" in space through an armada of

intelligent space probes that autonomously explore the nooks and crannies of the solar

system. Moreover, autonomous systems technology will help in manned exploration,

possibly supporting humans and robots living o� the land as part of a manned mission

back to the moon or to Mars.
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1 Introduction

The melding of space exploration and robotic intelligence has had an amazing hold on the
public's imagination, particularly in its vision of the future. For example, the science �ction
classic \2001: A Space Odyssey" o�ered a future in which humankind was �rmly established
beyond Earth, within amply populated moon-bases and space-stations. At the same time,
intelligence was �rmly established beyond humankind through the impressive HAL9000 com-
puter, created in Urbana, Illinois on January 12, 1997. Of course January 12th, 1997 has
passed without a moon base or HAL9000 computer in sight. The International Space Sta-
tion will begin its launch into space this year, reaching completion by 2002. However, this
spacestation is far more modest in scope.

While this reality is far from our ambitious dreams for humans in space, space exploration
is suprising us with a di�erent future that is particularly exciting for robotic exploration,
and for the information technology community that will play a central role in enabling this
future:

Our vision in NASA is to open the Space Frontier. When people think of space,
they think of rocket plumes and the space shuttle. But the future of space is
in information technology. We must establish a virtual presence, in space, on
planets, in aircraft, and spacecraft.

| Daniel S. Goldin, NASA Administrator, Sacramento, California, May 29, 1996

Achieving this ambitious goal requires a strong motive, mechanical means, and compu-
tational intelligence. We briey consider the scienti�c questions that motivate space explo-
ration and the mechanical means for exploring these questions, and then focus the remainder
of this paper on our progress towards endowing these mechanical explorers with a form of
computational intelligence that we call remote agents.

The development of a remote agent under tight time constraints has forced us to re-
examine, and in a few places call to question, some of AI's conventional wisdom about the
challenges of implementing embedded systems, tractable reasoning and representation. This
topic is addressed in a variety of places throughout this paper.

1.1 Establishing a Virtual Presense in Space

Renewed motives for space exploration have recently been o�ered. A prime example is a
series of scienti�c discoveries that suggest new possibilities for life in space. The best known
example is evidence, found during the summer of 1996, suggesting that primitive life might
have existed on Mars more than 3.6 billion years ago. More speci�cally, the recent discov-
ery of extremely small bacteria on Earth, called nanobacteria, lead scientists to examine
the Martian meteorite AlH84001 at �ne resolution, where they found evidence suggestive
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of \native microfossils, mineralogical features characteristic of life, and evidence of complex
organic chemistry."[?] Extending a virtual presence to con�rm or overturn these �ndings
requires a new means of exploration that has higher performance and is more cost e�ective
than traditional missions. Traditional planetary misions, such as the Galileo Jupiter mission
or the Cassini Saturn mission, have price tags in excess of a billion dollars, and ground crews
ranging from 100 to 300 personnel during the entire life of the mission. The Mars Envi-
ronmental Survey mission concept (MESUR)[?] introduced a paradigm shift within NASA
towards lightweight, highly focused missions, at a tenth of the cost, and operated by small
ground teams. The viability of this concept was vividly demonstrated last summer through
the success of NASA's Mars/MESUR Path�nder mission. Likewise Sojourner, originating
from micro-rover concepts developed by Dave Miller and others at JPL, represents a revo-
lution in rover technology with a fraction of the weight and launch cost of multi-ton rovers
like Ambler [?].

Path�nder and Sojourner demonstrate an important mechanical means to achieving a
virtual presence, but currently lack the onboard intelligence necessary to achieve the goals of
more challenging missions. For example, operating Sojourner for its two month life span was
extremely taxing for its small ground crew, with crew fatigue leading to commanding errors
and loss of science opportunity. Future Mars rovers are expected to operate for over a year,
emphasizing the need for the development of remote agents that are able to continuously
and robustly interact with an uncertain environment.

Rovers are not the only means of exploring Mars. Another innovative concept is a
Martian solar airplane, under study at NASA Lewis and NASA Ames. Given the thin CO2

atmosphere on Mars, a plane ying a few feet above the Martian surface is like a terrestrial
plane ying more than 90,000 feet above sea level. This height is beyond the reach of all
but a few existing planes. Developing a Martian plane that can autonomously survey Mars
over long durations, while surviving the idiosyncrasies of the Martian climate, requires the
development of remote agents that are able to accurately model and quickly adapt to their
environment.

A second example is the discovery of the �rst planet around another star, which raises
the intriguing question of whether or not Earth-like planets exist elsewhere. To search
for Earth-like planets, NASA is developing a series of interferometric telescopes, such as
the New Millennium Deep Space Three (DS3) mission. These inferometers identify and
categorize planets by measuring a wobble in a star, induced by its orbiting planets. They
are so accurate that, if pointed from California to Washington DC, they could measure the
thickness of a single piece of paper. DS3 achieves this requirement by placing three optical
units on three separate spacecraft, ying in tight formation up to a kilometer apart. This
extends the computational challenge to the development of multiple, tightly coordinated
remote agents.

A �nal example is the question of whether or not some form of life might exist beneath
Europa's frozen surface. In February of 1998, the Galilio mission identi�ed features on
Europa, such as a relatively smooth surface and chunky ice rafts, that lend support to
the idea that Europa may have subsurface oceans, hidden under a thin icy layer. One of
NASA's most intriguing concepts for exploring this subsurface ocean is an ice penetrator
and a submarine, called a cryobot and hydrobot, that could autonomously navigate beneath
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Europa's surface. This hydrobot would need to operate autonomously within an environment
that is utterly unknown.

Taken together, these examples of small explorers, including micro-rovers, airplanes, for-
mation ying interferometers, cryobots, and hydrobots, provide an extraordinary opportu-
nity for developing remote agents that assist in establishing a virtual presence in space, on
land, in the air and under the sea.

1.2 Requirements for Building Remote Agents

The level of onboard autonomy necessary to enable the above missions is unprecedented.
Added to this challenge is the fact that NASA will need to achieve this capability at a
fraction of the cost and design time of previous missions. In contrast to the billion dollar
Cassini mission, NASA's target is for missions that cost under 100 million dollars, developed
in 2-3 years, and operated by a small ground team. This ambitious goal is to be achieved at an
Apollo-era pace, through the New Millennium Program's low cost, technology demonstration
missions. The �rst New Millennium probe, Deep Space One (DS1), had a development time
of only two and a half years and is scheduled for a mid-1998 launch.

The unique challenge of developing remote agents for controlling these space explorers is
driven by four major properties of the spacecraft domain. First, a spacecraft must carry out
autonomous operations for long periods of time with no human intervention. This require-
ment stems from a variety of sources including the cost and limitations of the deep space
communication network, spacecraft occultation when it is on the \dark side" of a planet, and
communication delays. For example, the Cassini spacecraft must perform its critical Saturn
orbit insertion maneuver without any human assistance due to its occultation by Saturn.

Second, Autonomous operations must guarantee success, given tight deadlines and re-

source constraints. Tight deadlines that give no second chances stem primarily from orbital
dynamics, and include examples such as executing an orbit insertion maneuver within a �xed
time window or taking asteroid images during a narrow window around the time of closest
approach. Tight spacecraft resources, whether renewable like power or non-renewable like
propellant, must be carefully managed and budgeted throughout the mission.

Third, since spacecraft are expensive and are often designed for unique missions, space-
craft operations require high reliability . Even with the use of highly reliable hardware, the
harsh environment of space can still cause unexpected hardware failures. Flight software
must compensate for such failures by repairing or recon�guring the hardware, or switching
(to possibly degraded) operation modes. Providing such a capability is complicated by the
need for rapid failure responses to meet hard deadlines and conserve precious resources,
and due to limited observability of spacecraft state. The latter stems from limited on-board
sensing, since additional sensors add weight, and hence increase mission cost. Furthermore,
sensors are no more reliable, and often less so, than the associated hardware, thus making
it di�cult to deduce true spacecraft state.

Fourth, spacecraft operation involves concurrent activity among a set of tightly coupled

subsystems. A typical spacecraft is a complex networked, multi-processor system, with one
or more ight computers communicating over a bus with sophisticated sensors (e.g., star
trackers, gyros, sun sensors), actuator subsystems (e.g., thrusters, reaction wheels, main
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engines), and science instruments. These hybrid hardware/software subsystems operate
as concurrent processes that must be coordinated to enable synergistic interactions and
to control negative ones. For example, while a camera is taking a picture, the attitude
controller must hold the spacecraft at a speci�ed attitude, and the main engine must be
o� since otherwise it would produce too much vibration. Hence, all reasoning about the
spacecraft must reect this concurrent nature.

1.3 A Remote Agent architecture

Following the announcement of the New Millennium program in early 1995, spacecraft engi-
neers from JPL challenged a group of AI researchers at NASA Ames and JPL to demonstrate,
within the short span of �ve months, a fully capable remote agent architecture for space-
craft control. To evaluate the architecture the JPL engineers de�ned the New Millennium
Advanced Autonomy Prototype (Newmaap), a simulation study based on NASA's Cassini
Saturn mission, that retains its most challenging aspects. The Newmaap spacecraft is a
scaled down version of Cassini, NASA's most complex spacecraft to date. The Newmaap
scenario is based on the most complex mission phase of Cassini|successful insertion into
Saturn's orbit even in the event of any single point of failure. The Remote Agent architecture
developed for the Newmaap scenario integrated constraint-based planning and scheduling,
robust multi-threaded execution, and model-based diagnosis and recovery. An overview of
the architecture is provided in Section ??. Additional details, including a description of
the Newmaap scenario, may be found in [36]. The success of the Newmaap demonstration
resulted in the Remote Agent being selected as a technology experiment on DS1. This ex-
periment is currently scheduled for late 1998. Details of the experiment can be found in
[2].

The development of the Remote Agent architecture also provided an important oppor-
tunity to reassess some of AI's conventional wisdom, which includes:

� \Generative planning does not scale up for practical problems."

� \[For reactive systems] proving theorems is out of the question" [1]

� \[Justi�cation-based and Logical Truth Maintenance Systems] have proven to be woe-
fully inadequate. . . they are ine�cient in both time and space" [8]

� \[Qualitative] equations are far too general for practical use." [43]

� \Diagnostic reasoning from a tractable model is largely well understood. [However] we
don't know how to model complex behavior..." [?].

We examine these statements in more detail later in the paper. But �rst we highlight the
three important guiding principles underlying the design of the Remote Agent architecture.
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1.4 Principles guiding the design of the Remote Agent

Many agent architectures have been developed within the AI community, particularly within
the �eld of indoor and outdoor mobile robots. The Remote Agent architecture has three
distinctive features. First, it is largely programmable through a set of compositional, declar-
ative models. We refer to this as model-based programming . Second, it performs signi�cant
amounts of onboard deduction and search at time resolutions varying from hours to hun-
dreds of milliseconds. Third, the Remote Agent is designed to provide high-level closed-loop
commanding .

1.4.1 Model-based Programming

The most e�ective way to reduce software development cost is to make the software \plug and
play," and to amortize the cost of the software across successive applications. This is di�cult
to achieve for the breadth of tasks that constitute an autonomous system architecture, since
each task requires the programmer to reason through system-wide interactions to implement
the appropriate function. For example, diagnosing a failed thruster requires reasoning about
the interactions between the thrusters, the attitude controller, the star tracker, the bus
controller, and the thruster valve electronics. Hence this software lacks modularity, and has
a use that is very restricted to the particulars of the hardware. The one of a kind nature of
NASA's explorers means that the cost of reasoning through system-wide interactions cannot
be amortized, and must be paid over again for each new explorer. In addition, the complexity
of these interactions can lead to cognitive overload by the programmers, causing suboptimal
decisions and even outright errors.

Our solution to this problem is called model-based programming , introduced in [47].
Model-based programming is based on the observation that programmers and operators
generate the breadth of desired functionality from commonsense hardware models in light
of mission-level goals. In addition the same model is used to perform most of these tasks.
Hence although the ight software itself is not highly reusable, the modeling knowledge used
to generate this software is highly reusable.

To support plug and play, the Remote Agent is programmed, wherever possible, by
specifying and plugging together declarative component models of hardware and software
behaviors. The Remote Agent then has the responsibility of automating all reasoning about
system wide interactions from these models. For example, the model-based diagnosis and
recovery component of the Remote Agent uses a compositional, declarative, concurrent tran-
sition system model with a combination of probabilistic and deterministic transitions (see
Section 5). Similarly, the planning and scheduling component is constraint-based , operating
on a declarative domain model to generate a plan from �rst principles (see Section ??). Even
the executive component, which is primarily programmed using a sophisticated scripting lan-
guage, uses declarative models of device properties and interconnections wherever possible;
generic procedures written in the scripting language operate directly on these declarative
models.
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1.4.2 On-board deduction and search

Given the task of automating all reasoning about system interactions, a natural question
is whether or not the Remote Agent should do this on-board in real-time or o�-board at
compile time. The need for fast reactions suggests that all responses should be precomputed.
However, since our space explorers often operate in harsh environments over long periods of
time, a large number of failures can frequently appear during mission critical phases. Hence
pre-enumerating responses to all possible situations quickly becomes intractable. When
writing ight software for traditional spacecraft, tractability is usually restored with the
use of simplifying assumptions, such as using local suboptimal control laws, assuming single
faults, ignoring sensor information, or ignoring subsystem interactions. Unfortunately, this
can result in systems that are either brittle or grossly ine�cient, which is one reason why so
many human operators are needed within the control loop.

The di�culty of precomputing all responses and the requirement of highly survivable
systems means that the Remote Agent must use its models to synthesize timely responses
to anomalous and unexpected situations in real-time. This applies equally well to the high-
level planning and scheduling component and to the low-level fault protection system, both
of which must respond to time-critical and novel situations by performing deduction and
search in real-time (though, of course, the time-scale for planning is signi�cantly larger than
for fault protection).

This goal goes directly counter to the conventional AI wisdom that robotic executives
should avoid deduction within the reactive loop at all costs. This wisdom emerged in the
late 80's after mathematical analysis showed that many, suprisingly simple, deductive tasks
were NP Hard. For example, after proving that his formulation of STRIPS-style planning
was NP Hard, David Chapman concluded [4]:

\Hoping for the best amounts to arguing that, for the particular cases that
come up in practice, extensions to current planning techniques will happen to be
e�cient. My intuition is that this is not the case."

On the ip side, what o�ers hope is the empirical work developed in the early 90's on
hard satis�ability problems. This work found that most satis�ability problems can quickly
be shown to be satis�able or unsatis�able [5; 44]. The suprisingly elusive hard problems
lie at a phase transition from solvable to unsolvable problems. The elusiveness of hard
problems, and the need to turn to random generation to �nd them, suggests that most
real world problems are tractable. Furthermore, it suggests that if a deductive kernel is
carefully designed and constrained, then it can perform signi�cant deduction in real-time.
For example, the diagnosis and recovery component of the Remote Agent adopts a RISC-like
approach in which a wide range of deductive problems are reduced to queries on a highly
tuned, propositional, best-�rst search kernel [48; 35]. The planning component exploits a set
of assumptions about domain structuring to generate plans with acceptable e�ciency using
a simple search strategy and a simple language for writing heuristic control rules.
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Figure 1: NMRA architecture embedded within ight software.

1.4.3 Goal-directed, closed loop commanding

It is striking to many layman that a mission like Cassini requires a ground crew of 100 to
300 personnel. Although Cassini's nominal mission is not simple, what drives the need for
such a large team is the e�ort required to robustly respond to extraordinary situations. The
need for extreme robustness is Remote Agent's most de�ning requirement.

The robustness of classical control systems dramatically improved through the concept
of feedback control. Feedback control replaced direct commanding with a speci�cation of in-
tended behavior, in terms of a setpoint trajectory, and a feedback mechanism that commands
the system until the error between actual and intend behavior is eliminated.

was dramatically improved
basic through the introduction of feedback control.
The Apollo 13 crisis o�ers a well known example that highlights the diverse e�orts humans

will take in order to achieve a mission.
an extreme example that highlights the kind of diverse
well known example that highlights the diversity
highlights the kind of

2 Remote Agent architecture

This section provides an overview of the Remote Agent (RA) architecture. The architec-
ture was designed to address the domain requirements discussed in Section ??. The need
for autonomous operations with tight resource constraints and hard deadlines dictated the
need for a temporal planner/scheduler (PS), with an associated mission manager (MM), that
manages resources and develops plans that achieve goals in a timely manner. The need for
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high reliability dictated the use of a reactive executive (EXEC) that provides robust plan
execution and coordinates system fault protection, and a model-based mode identi�cation
and recon�guration system (MIR) that enables rapid failure responses in spite of limited
observability of spacecraft state. The need to handle concurrent activity impacted the repre-
sentation formalisms used: PS models the domain with concurrently evolving state variables,
EXEC uses multiple threads to manage concurrency, and MIR models the spacecraft as a
concurrent transition system.

The RA architecture, and its relationship to the ight software within which it is em-
bedded, is shown in Figure 1. When viewed as a black-box, RA sends out commands to
the real-time control software (RT). RT provides the primitive skills of the autonomous sys-
tem, which take the form of discrete and continuous real-time estimation and control tasks,
e.g., attitude determination and attitude control. RT responds to high-level commands by
changing the modes of control loops or states of devices. Information about the status of
RT control loops and hardware sensors is passed back to RA either directly or through a set
of monitors. The monitors discretize the continuous data into a set of qualitative intervals
based on trends and thresholds, and pass the results back to the RA.

Planner/Scheduler (PS) and Mission Manager (MM): PS is an integrated temporal
planner and resource scheduler [33] that uses constraint-based representations and heuristic
guided chronological backtracking to develop plans. It is activated by MM when a new plan
is desired by the EXEC. When requested by the EXEC, MM formulates short-term planning
problems for PS based on a long-range mission pro�le. The mission pro�le is provided at
launch and contains a list of all nominal goals to be achieved during the mission. MM
determines the goals that need to be achieved in the next horizon (typically 2 weeks long)
and combines them with the initial (or projected) spacecraft state provided by EXEC. This
decomposition into long-range mission planning and short-term detailed planning enables
the RA to undertake an extended diverse mission with minimal human intervention.

PS takes the plan request formulated by MM and produces a exible, concurrent temporal
plan. The plan constrains the activity of each spacecraft subsystem over the duration of the
plan, but leaves exibility for details to be resolved during execution. The plan contains
activities and information required to monitor the progress of the plan as it is executed. The
plan also contains an explicit activity to initiate the next round of planning.

Other onboard software systems, called planning experts, participate in the planning
process by requesting new goals or answering questions for PS. For example, the navigation
planning expert requests new goals in the form of pictures that are needed to update the
understanding of spacecraft trajectory, and the attitude planning expert answers questions
about estimated duration of speci�ed turns and resulting resource consumption.

Smart Executive (EXEC): EXEC is a reactive plan execution system with respon-
sibilities for coordinating execution-time activity. EXEC executes plans by decomposing
high-level activities in the plan into commands to the real-time system, while respecting
temporal constraints in the plan. EXEC uses a rich procedural language, ESL [?], to de�ne
alternate methods for decomposing activities.

EXEC achieves robustness in plan execution by exploiting the plan's exibility, e.g., by
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being able to choose execution time within speci�ed windows or by being able to select dif-
ferent task decompositions for a high-level activity. EXEC also achieves robustness through
closed-loop commanding, whereby it receives feedback on the results of commands either
directly from the command recepient or by inferences drawn by the mode identi�cation
component of MIR. When some method to achieve a task fails, EXEC attempts to accom-
plish the task using an alternate method in that task's de�nition or by invoking the mode
recon�guration (MR) component of MIR.

When instructed to request a new plan by the currently executing plan, EXEC provides
MM with the projected spacecraft state at the end of the current plan, and requests a new
plan. If the EXEC is unable to execute or repair the current plan, it aborts the plan, cleans
up all executing activities, and puts the controlled system into a stable safe state (called a
standby mode). EXEC then provides MM the current state and requests a new plan while
maintaining this standby mode until the plan is received.

Mode Identi�cation and Recon�guration (MIR): The MIR component of the RA is
provided by Livingstone [48], a discrete model-based controller. Livingstone is distinguished
by its use of a single declarative spacecraft model to provide all its functionality, and its use
of deduction and search within the reactive control loop. Livingstone's sensing component,
called mode identi�cation (MI), tracks the most likely spacecraft states by identifying states
whose models are consistent with the sensed monitor values and the commands sent to the
real-time system. MI reports all inferred state changes to EXEC, and thus provides a level
of abstraction to the EXEC, enabling it to reason purely in terms of spacecraft state, and
not low-level sensor values.

Livingstone's commanding component, called mode recon�guration (MR), uses the space-
craft model to �nd a least cost command sequence that establishes or restores desired func-
tionality by recon�guring hardware or repairing failed components. Within the RA architec-
ture, MR is invoked by the EXEC with a recovery request that speci�es a set of constraints
to be established and maintained. In response, MR produces a recovery plan that, when
executed by EXEC, moves the spacecraft from the current state (as inferred by MI) to a
new state in which all the constraints are satis�ed.

3 Planning and scheduling

The Planner/Scheduler (PS) of the Remote Agent provides the high-level, deliberative plan-
ning component of the architecture. It receives from MM and EXEC the initial spacecraft
conditions and the goals for the next scheduling horizon. It produces a plan, i.e., a high-level
program that EXEC must follows in order to achieve the required goals.

Figure 2 shows the structure of PS (the most detailed account to date of PS and its un-
derlying architecture are [I-SAIRAS paper] and [HSTS paper]). A general-purpose planning
engine provides a problem solving mechanism that can be reused in di�erent application
domains. The special-purpose domain knowledge completely characterizes the application.
The planning engine consists of the plan database and the search engine. The plan database
is provided by the Heuristic Scheduling Testbed System (HSTS) planning and scheduling
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framework. The search engine calls the plan database to record the consequences of problem
solving step and to require consistency maintenance and propagation services.

The search engine, or Iterative Re�nement Scheduler (IRS), is a chronological backtracker
that encodes a �nite set of methods usable to extend a partial plan. For example, IRS can
select a still unenforced temporal relation constraint. In this case IRS will add to the plan
constraints to guarantee that the temporal relation is satis�ed in any further plan re�nement.

Programming the planning engine for a speci�c application requires both a description of
the domain, the domain model, and methods for IRS to choose among branching alternatives
during the search process, the domain heuristics.

The success of PS is largely dependent on the ability to provide a good model of the
domain constraints. To do so, PS uses the Domain Description Language (DDL), part of the
HSTS framework. DDL makes two strong assumptions on how to express a planning domain.
Firstly, it structures the description of the system as a �nite set of state variables. A plan
describes the evolution of a system as as a set of parallel histories (timelines) over linear and
continuous time, one per state variable. Secondly, it uses a uni�ed representational primitive,
the token, to describe both actions and state literals. As in [], a token extends over a metric
time interval. The description of a system consists of constraints between tokens that must
be satis�ed in a plan for it to represent legal behaviors of the controlled system. We further
discuss these structural assumptions in section 3.2.

PS can generate complex plans with performance acceptable for an on-board spacecraft
application. We believe that this is due to the use of constraint posting and propagation as
the primary problem solving method together with the restrictions on the topology of the
constraint networks imposed by DDL's structural assumptions. PS can do so even when
using a very simple search strategy (chronological backtracking) and a very simple heuristic
language to program the search engine (rules that assign a numeric priority to plan aws at
the moment the aws appear in the plan).

While the primary goal of PS certainly is to provide a reliable software ight software
module for DS1, PS tries to remain as true as possible to concepts and techniques that
have evolved from AI planning and scheduling research. As one would expect, this meeting
of theory and practice showed us the need for signi�cant extensions to classical planning
and scheduling. However, we also believe that PS is a concrete example that some basic
assumptions of AI planning are adequate and, in certain cases, necessary to tackle real-
world, mission-critical applications. Most notably PS demonstrates that planning from a
�ne-grain, declarative model of the world is adequate for the solution of complex problems
of practical signi�cance. Furthermore, we believe that at the current time AI planning and
scheduling techniques constitute possibly the only viable software engineering techniques for
the complex problem of developing high-level commanding software for highly autonomous
sytems. This bears great promises for the future of the technology.

We now discuss some of these points in more detail.

3.1 Non-classical aspects of the DS1 domain

A complex, mission-critical application like DS1 is a serious stress-test for classical AI plan-
ning and scheduling technology.
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Figure 2: Structure of PS
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The classical AI planning problem is the achievement of a set of goal conditions given an
initial state and a description of the controlled system as a set of planning operators. Most
classical AI planners use representations of the world derived from STRIPS, which sees the
world as an alternation of inde�nitely persistent states and instantaneous actions.

Classical schedulers see the world as a set of resources and a set of structured task
networks, each task having a duration that is known a priori. In certain models, resources
can be in di�erent modes and require setup actions to transition between them; however
setups are typically not included in classical scheduling formulations. Solving a problem
involves allocating a start time and a resource to each task while guaranteeing that all
deadlines and resource limits are satis�ed.

The DS1 domain not only forces a view of the world that merges planning and scheduling,
but also introduces the need for signi�cant extensions to the classical perspective. Here is a
quick review of the types of constraints on system dynamics and the types of goals that PS
must handle.

3.1.1 System dynamics

To describe the dynamics of the spacecraft hardware and real-time software, we �nd the
need to express state/action constraints (e.g., preconditions such as \To take a picture, the
camera must be on"), continuous time and the management of �nite resources (such as on-
board electric power). Classical planning or classical scheduling cover all of these aspects.
However, there are other modeling constraints that are equally important but outside the
classical perspective.

� persistent parallel threads: separate system components evolve in a loosely coupled
manner. This can be represented as parallel execution threads that may need coordi-
nation on their relative modes. Typical examples of such threads are various control
loops (e.g., Attitude Control and Ion Propulsion System Control) that can never ter-
minate but only switch between di�erent operational modes.

� functional dependencies: several parameters of the model are best represented as func-
tions of other parameters. For example, the duration of a spacecraft turn depends on
the pointing direction from which the turn starts and the one where the turn ends.
The exact duration of a turn is not known a priori but can only be computed after the
turn has been inserted between source and destination in the �nal plan. Tracking the
value of partially instantiated functional dependencies in the plan is necessary in order
for the planner to evaluate progress and limit backtracking.

� continuous quantities: besides time, the planner must keep track of the status of other
continuous quantities over time. These include renewable resources like battery charge
or data volume and non-renewable resources like propellant levels. For example, in DS1
the Ion Propulsion System (IPS) engine accumulates thrust over long periods of time
(on the order of months). During thrust accumulation, several other activities must be
executed that require the engine to be shut down while the activity is going on. Between
interruptions, however, the plan must keep track of the previously accumulated amount
of thrust so as not to over-shoot or under-shoot the total requested thrust.
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� planning experts: it is unrealistic to expect that all aspects of the domain will be
encoded in PS. PS is only one part of a large, multi-team software development e�ort.
Other teams have the expertise and, often, already available sophysticated software
to e�ectively model subsystem behaviors and mission requirements. PS must be able
to e�ectively communicate information with these third-party software modules, the
planning experts. An example of planning expert in DS1 is the Navigation Expert
which manages the spacecraft trajectory. The Navigation Expert is in charge of feeding
PS with request for beacon asteroid observations to determine the trajectory error; it
also gives PS thrusting maneouver goals in order to maintain the desired trajectory.

3.1.2 Goals

The DS1 problem can only be expressed by making use of a disparate set of classical and
non-classical goal types. Problem requirements include conditions on �nal states (e.g., \at
the end of the scheduling horizon the camera must be o�"), which are classical planning
goals, and requests for scheduled tasks within given temporal constraints (e.g., \communicate
with Earth only when one of the antennas of the Deep Space Network is visible from the
spacecraft"), which are classical scheduling goals. Non-classical categories of goals include:

� periodic goals: for example, optical navigation activities are naturally expressed as
a periodic function (\take asteroid pictures for navigation for 2 hours every 2 days
plus/minus 6 hours"). PS must unfold this goal and schedule picture taking activity
while taking into account interactions with other planned tasks or requested resource
modes.

� information seeking goals: this arises in the interaction with planning experts and are
not unlike those that can be found in the softbot domain (e.g., \Ask the on-board
navigation planning expert for the most up-to-date thrusting pro�le").

� quantity accumulation: these arise in the handling of continuous resources. For exam-
ple, in DS1 a goal expresses the requested thrust accumulation as a duty cycle, i.e.,
the percentage of the scheduling horizon during which the IPS engine is thrusting. PS
will choose the speci�c time intervals during which IPS will be actually thrusting. It
will do so by trading o� IPS requireements with those of other goals.

� default goals: they specify conditions that the system must satisfy when not trying
to achieve any other goal. For example, in order to facilitate possible emergency
communications the spacecraft should keep the High Gain Antenna pointed to Earth
whenever there is no other goal requiring it to point in a di�erent direction.

3.2 Domain Structure Assumptions in PS

We mentioned that PS makes two strong structural assumptions on how to represent domain
models. We call them the state variable assumption and the token assumption. We now
discuss both of these in more detail.
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1. state variable assumption: the evolution of any system over time is entirely described
by the values of a �nite set of state variables.

State variables are a generalization of resources as used in classical scheduling. In schedul-
ing an evolution of the system is a description of task allocation to resources. Similarly, in
PS any literal used inside a plan must be associated to a state variable. The literal represents
the value assumed by the state variable at a given time, and a state variable can assume one
and only one value at any point in time. Building a plan involves determining a complete
evolution of all system state variables over a scheduling horizon of �nite duration.

At �rst, structuring a model with a �nite set of state variables could appear quite re-
strictive. By representing plans as partially ordered graphs of actions and states, classical
planning seems more permissive. Also classical planning does not impose limits on the num-
ber of literals that can appear in the descriptor of a state. However, a more in-depth look
shows that this need not be the case. In the �rst place, it is quite easy to identify state
variables in domains typically addressed in classical planning. For example, in the \monkey
and bananas" world all actions and state literals can be assigned as the values of one or
more of the following state variables: the location of the monkey, the location of the block,
the location of the bananas and the elevation of the monkey (whether the monkey is on the
oor, climbing on the block or on top of the block). In the second place, recent results in
planning research seem to suggest that planners that use representational devices similar to
state variables can seriously outperform planners that do not.

1. token assumption: no distinction needs to be made between representational primitives
for actions and states. A single representational primitive, the token, is su�cient to
describe the evolution of a system over time.

This structural assumption challenges a fundamental tenet of classical planning: the
dichotomy between actions and states. To illustrate why we believe this dichotomy is prob-
lematic, we consider an example drawn from the spacecraft operations domain.

The attitude of a spacecraft, i.e., its orientation in three-dimensional space, is supervised
by a closed-loop Attitude Control System (ACS). When asked to achieve or maintain a certain
attitude, ACS determines the discrepancy between the current and the desired attitude. It
then appropriately commands the �ring of the spacecraft thrusters if the discrepancy is
higher than a maximum acceptable error. This cycle is continuously repeated until the
attitude error is acceptable. When controlled by ACS, the spacecraft can be in one of two
possible modes:

1. Turning (x, y), i.e., changing attitude from an initial pointing x to a �nal pointing y;

2. Constant Pointing (z), i.e., maintaining attitude around a �xed orientation z.

If using a classical planning representation to model attitude, we would need to map these
two modes into two di�erent kinds of literals: state literals, representing persistent conditions,
or action literals, representing change. The problem is that in spite of appearances it is by no
means easy to choose the mapping between system modes and states/actions. Most people
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would probably �nd it natural to map Constant Pointing (z) to a state literal and Turning

(x, y) to an action literal. This is certainly reasonable if one focuses on the value over time
of the actual orientation of the spacecraft.

However, we may want to take a di�erent perspective and consider the level of \activity"
of the thrusters during attitude control. Indeed, it is the thrusters that are commanded by
ACS and the attitude of the spacecraft is a consequences of thruster actions. In this case,
the situation is di�erent. It so happens that thrusters are usually more active the lower the
acceptable error in attitude is. In fact, thrusters are �red more frequently while maintaining
a Constant Pointing (z) state with a very low error tolerance than while executing a Turning
(x, y), where it may be su�cient to �re the thrusters at the beginning of the turn to start
it and at the end of the turn to stop it. In this case, one would conclude that in fact both
Turning (x, y) and Constant Pointing (z) would be best represeted as actions.

The opposite perspective is also possible. If we focus on what EXEC does when executing
literals present in the plan, we can see that EXEC does nothing more than communicating to
ACS the appropriate control law and set point that will cause the required spacecraft attitude
behavior. From this point of view, it would be reasonable to see both Constant Pointing(z)

and Turning (x, y) are two di�erent parameter setting for the ACS control system, concep-
tually best represented with state literals.

In this example the distinction between actions and states is not clear. As a consequence,
PS takes a radical view and gives all literals the same status. More precisely, a plan literal
always describes some process (either dynamic or stationary) that occurs over a period of
time of non-negative duration. To purposefully remove any reference to the state/action
dicothomy we use the neutral term token to refer to such temporally scoped assertions.

The main consequence of this assumption is that all representational primitives are uni-
formly available for all tokens of all types. For example, Figure 3 describes the conditions
that have to be satis�ed in the plan in order for the DS1 Microelectronics Integrated Camera
And Spectrometer (MICAS) to take an image. It is similar to temporally scoped operators
used in temporal planning approaches []. In our framework, however, similar constraints can
also be imposed on \state" tokens like MICAS.action sv = Idle. We call these constraint
patterns compatibilities to emphasize their di�erent nature from planning operators. Addi-
tionally, PS models can express functional duration constraints both on \actions" (e.g., the
duration of Turning (x, y) depends on the angle between x and y) and on \states" (e.g., the
maximum duration of Constant Pointing (z) depends on the relative orientation of the Sun
with respect to z since this determines the satisfaction of thermal constraints during on sun
exposure for sensitive parts of the spacecraft).

3.3 Plans as Constraint Networks

PS plans are e�ectively programs that EXEC interprets at run time to generate a single,
acceptable and consistent behavior for the spacecraft. However, to ensure execution robust-
ness plans should as much as possible avoid being single, completely speci�ed behaviors.
They should instead compactly describe a behavior envelope, i.e., a set of possible behav-
iors. EXEC can incrementally select the most appropriate behavior in the envelope while
responding to information that becomes available only at execution time.
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MICAS.actions_sv =

Take_Image (?id, ?orientation, ?priority, ?exp_time, ?settings)

{

:parameter_functions

?_duration_ <- Compute_Image_Duration (?exp_time, ?settings);

:temporal_relations

met_by

MICAS.action_sv = Idle;

meets

MICAS.action_sv = Idle;

equal

Power.availability_sv =

DELTA { Used <- Used + 140.0;

Available <- Available - 140.0;};

contained_by

Spacecraft.attitude_sv =

Constant_Pointing (?orientation);

contained_by

MICAS.health_sv = MICAS_Available;

contained_by

MICAS.mode_sv = Ready;

}

Figure 3: Taking a picture with the on-board MICAS camera.
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PS satis�es this requirement by representing plans as constraint networks. For example,
start and end times of tokens are integer-valued variables interconnected into a simple tem-
poral constraint network []. Codesignations relate parameters that must assume the same
value for any plan execution. Other functional dependencies can also be represented. For
example, tokens that describe thrust accumulation with the IPS engine contain constraints
that relate the initial accumulation (due to previous thrust accumulation tokens), the �nal
accumulation and the duration of the token. During plan construction, when PS tries to
enforce compatibility constraints, it actually posts portions of a constraint network in the
plan database. The plan database can then be required to enforce consistency checking by
propagate the new constraints to the rest of the network. when the constraint network is
consistent, constraint propagation deduces acceptable ranges of values for each variable.

Plans are intrinsically exible. During plan execution, EXEC interprets the plan's con-
straint network in order to select speci�c values for the plan variables. For example, if the
plan speci�es an acceptable range for the start time of a token, EXEC will have the freedom
to start token execution at any one of the range values. This decision will a�ect the value
range for the start or end of other, as yet unexecuted tokens. To adjust value ranges, EXEC
must be able to execute constraint propagation at run time.

EXEC's constraint propagation has very di�erent requirements than that of PS. The
time EXEC needs to propagate constraints directly a�ects EXEC's responsiveness, i.e., the
ability to give real-time guarantees on the exact time at which EXEC will actually start
or terminate the execution of a token. This is because EXEC cannot discriminate between
events whose temporal distance is smaller than the time needed to process a single event (i.e.,
propagate constraint, terminate all tokens ending with the event and start all tokens starting
with the event). This lower bound on event discrimination is a hard limit on reactiveness
[34]. One can show that di�erent equivalent constraint networks (i.e., constraint networks
that can yield the same set of variable/value assignments) can yield very di�erent constraint
propagation requirements at execution time. PS solves the reactiveness problem for temporal
constraint networks by post-processing the network and transforming it into an equivalent,
minimal one. Minimality here means that EXEC needs only perform the minimum possible
amount of constraint propagation while still ensuring complete accessibility to all consistent
behaviors that can be generated by the constraint network.[][].

3.4 On the economical feasibility of generative planning

Figure 4 outlines PS search process. If the partial plan in the plan database has \aws",
PS non-deterministically selects one and extends the plan constraint network to �x it. Then
the plan database performs an arc-consistency propagation to detect inconsistencies and
restrict variable value ranges. If propagation detects an inconsistency, then PS cronologically
backtracks. When the plan database contains no more aws, a plan is returned.

PS recognizes several kind of aws. One example of unscheduled goal token aw arises
when the Navigation Expert returns requests for beacon asteroid images. These are rep-
resented as instances of tokens for which PS has not yet found a legal position on a state
variable. If PS cannot �nd a legal position for a token, then the observation goal is re-
jected. The underconstrained variable value aw arises in two cases: (1) the value range for
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Figure 4: PS problem solving cycle
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a variable does not permit PS to uniquely select a compatibility descriptor for a token; (2)
arc consistency is insu�cient to guarantee that EXEC will be able to generate a consistent
behavior at execution time.

PS is a purely generative planner. Essentially, the problem solving cycle alternates be-
tween posting compatibility constraints and restricting the value range of some variable.
Posting compatibility constraints is analogous to subgoaling in classical generative planners,
while restricting ranges is analogous to the value selection in constraint propagation search.

With these simple devices PS can generate plans of up to 156 tokens and 186 temporal
constraints between tokens. The search tree required to �nd a solution has 649 nodes and a
search e�ciency of about 64% where e�ciency is measured by the ratio between the depth
of the search tree and the number of expanded nodes (a search e�ciency of 100% indicates
no backtracking).

PS does not use pre-compiled token networks but assembles the overall plan from atomic
components. This fact di�erenciate PS from all the practical applications of planning tech-
nology to date [] [] []. These systems rely on Hierarchical Task Network (HTN) planning, in
which most of the power comes from hand-generated task networks that are then patched to-
gether into an overall plan. The strong negative correlation between generative planning and
successful applications has led to the hypothesis that \precondition achievement planning
has limited utility with respect to the automatic solution of economically viable planning
problems". We will now discuss to which extent our work questions the validity of this
hypothesis.

Although precompiling token networks into HTN could be a powerful problem solving
technique, our choice of pure generative planning is not accidental. Firstly, the characteristics
of the DS1 domain are not necessarily amenable to HTN planning because in DS1 the
planner must address a wide range of goal types, task decomposition hierarchies tend to
be shallow, and the various components of the controlled system can operate in several
possible modes. The result is that the number of required task decompositions is potentially
so large that it may be impractical to generate them and store them. Secondly, and most
importantly, the HTN formalism does not provide a strong separation between the encoding
of the domain model and that of the problem solving heuristics. While the former is valid
irrespective of the goals of a speci�c planning problem, the function of the latter is to ensure
acceptable performance and quality for the solution of speci�c planning problems. We choose
instead to clearly separate between domain model and heuristics. By using a less powerful
problem solving control mechanism, the shortcomings of our basic modeling approach and
our problem solving methods became more apparent and allowed us to more clearly focus on
needed improvements. As we shall see in section 6, the separation between domain models
and problem solving heuristics is crucial to facilitate validation and, ultimately, has a big
impact on the acceptability of AI technologies for critical applications.

4 Executive

The main challenge for spacecraft autonomy is to operate the system reliably and over ex-
tended periods of time without intervention. To this end EXEC plays the main coordination
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role as the intermediary between the other ight software modules, both internal and external
to RA. Here we concerntrate on two main aspects of EXEC's behavior:

� Periodic Planning over Extended Missions: EXEC must periodically ask PS for
new tasks and must coordinate PS operation with the other tasks in execution. Also,
operations are not interrupted if capabilities are lost. EXEC will ask for a new plan
by communicating to PS the available capabilities.

� Robust Plan Execution: EXEC must successfully execute plans in the presence of
uncertainty and failures. The exibility allowed by the plan is exploited by using a hy-
brid procedural/deductive execution strategy that performs context-dependent method
selection guided by state inference based on model-based diagnosis. Local recovery from
faults involves planning guided by constraints from the current plan execution context.

4.1 Periodic Planning over Extended Missions

4.1.1 Planning to plan

In the spacecraft domain, planning itself has informational preconditions (since planning
relies on input from other agents, who often need to complete some activity before they have
suitable input), state preconditions (it is hard to plan when too many things are chang-
ing quickly or unpredictably), and consumes scarce computational resources. Therefore, in
RA invoking the planner is analogous to commanding other subsystems like propulsion or
attitude control. Future planning activities appear in plans on a timeline and domain con-
straints inforced in the plan ensure that their resources and preconditions will all be achieved
before planning is invoked. This aspect of planning to plan [41] can be considered a form
of meta-planning [?], and addresses one of the signi�cant outstanding goals in the Phoenix
agent architecture [6].

RA's approach to planning to plan is illustrated in Figure 5. In this example, the PS
model represents the constraint that the next round of planning should occur only after the
navigation system has performed a new orbit calculation. This calculation relies on analysis
of several pictures, so PS inserts into the plan the supporting imaging activities and the
turns required to point the camera at the corresponding targets. During execution, EXEC
will initiate the next round of planning when it executes the planning activity installed in
the plan. Because of the constraints explicit in the plan, this will happen only after the
activities required for planning have been successfully completed.

4.1.2 Concurrent Planning and Execution

Even at pre-scheduled times, the limited computational resources available for planning,
combined with the di�culty of planning with severe resource limitations, cause each round
of planning to take a long time to complete. Throughout this process, the spacecraft will
still need to be operating with full capabilities. For example, with the current on-board
processor capabilities it is reasonable to expect PS to take up to 8 hours to generate a plan
for one week of operation. This sums up to about six percent of the total mission time spent
in generating plans. However, to reach the designated targets IPS propulsion may need to
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Imaging IdleIdleImagingIdle

Attitude Turn(a,b) Point(b) Turn(b,a)

contained_by

Goal Cruise_to_Target(t)

Planning Idle Planning

Nav Dead Reckoning Orbit Calc Idle

before

before

Point(a)

Figure 5: Sample Plan Fragment.

be operating with very duty cycles in eccess of 92% of the available time. Considering that a
succesful mission requires the execution of other activites (such as scienti�c experiments and
observations) and that often these require the IPS engine to be o�, it may not possible to
achieve the mission goals and avoid thrusting IPS at full force while PS is operating. Hence,
EXEC operates concurrently to PS [41]. This involves tracking changes to the planning
assumptions while planning, and using the currently-executing plan for prediction about
activities which will happen while planning for a new period is underway.

4.1.3 Replanning with degraded capabilities

When operating over extended periods of time a spacecraft must face problems arising from
aging: the capabilities of its hardware and control system may diminish over time. Once
these failures are recognized through a combination of monitoring and diagnosis, EXEC will
keep track of such degradation when commanding future planning cycles. For example, one
fault in DS1 is for one of its thrusters to be stuck shut. The attitude control software has
redundant control modes to enable it to maintain control following the loss of any single
thruster, but an e�ect of this is that turns take longer to complete. When EXEC is noti�ed
of this permanent change by MIR, it passes health information back to the planner. The
health information can also be used to update the models in PS. Capabilities can also be
opportunistic re-established, such as may happen following a reboot or human-assisted repair
procedures.
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4.2 Robust Plan Execution

We have seen that in nominal operations EXEC invokes the planning machinery as a by-
product of plan execution, and ensures that the agent is functioning on recent information.
However, if execution fails before the planning activity is properly prepared and executed,
the agent still needs a way to generate a plan and continue making progress on mission goals.
RA addresses this problem as follows: if the EXEC is unable to execute or repair the current
plan, it aborts the plan, cleans up all executing activities, and puts the controlled system
into a stable safe state, called a standby mode, which serves (by design) as a well-de�ned
invocation point for planning.

Hence, Figure 6 shows both major branches of the periodic planning and replanning cycle
in RA. If plan execution proceeds to the point of a pre-planned planning activity, EXEC
invokes the planner, continues executing while waiting for the new plan and smoothly installs
the new plan into the current execution context. In the event of plan failure, the executive
aborts all current activity, enters standby mode, requests a new plan from this well-de�ned
state (possibly updating the planner about degraded capabilities) and starts executing the
plan as soon as it receives it back from PS.

Note that establishing standby modes following plan failure is a costly activity with
respect to mission goals, as it causes us to interrupt the ongoing planned activities and
lose important opportunities. For example, a plan failure causing us to enter standby mode
during the comet encounter would cause loss of all the encounter science, as there is no
time to re-plan before the comet is out of sight. Such concerns motivate a strong desire
for plan robustness, so that plan execution can continue successfully even in the presence of
uncertainty and failures.

RA achieves robust plan execution through the following organization:

� Choose a high level of abstraction for planned activities so as to delegate as many
detailed activity decisisions as possible to the procedural executive.

� Handle execution failures using a combination of robust procedures and deductive
repair planning.

4.2.1 Delegating activity details to execution

Generation of plans with temporal exibility follows from the architecture of PS as a constraint-
based, least-commitment planner. A complementary source of plan robustness relies on
careful knowledge representation for each domain. The approach is to choose an appropriate
level of abstraction for activities planned by PS so as to leave as many details as possible
to be resolved by EXEC during execution. A PS token is abstracted in the sense that it
provides an envelope of resources (e.g., execution time allowances, maximum allocated power
consumption) and synchronization constraints across envelopes. For each token EXEC has
a task decomposition into more detailed activities that in the absence of exogenous failures
are guaranteed by design to be executable within the resource envelopes.

An example from the DS-1 Remote Agent Experiment [2] (see Figure 7) illustrates this
approach. A delta-v goal token requires the achievement a certain change (delta) in the
velocity of the spacecraft. Velocity changes are achieved by thrusting the engine for some

23



Figure 6: Periodic Planning and Replanning Cycle.

24



Figure 7: Plan fragment for achieving a change in spacecraft velocity.
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amount of time while pointing the spacecraft at a certain direction. A total velocity change
is achieved via a series of shorter thrust segments, where between each segment the engine
thrust is stopped while the spacecraft must be turned to the direction required by the next
segment. There is a constraint that ACS be in thrust-vector-control (TVC) mode shortly
after IPS has started thrusting and it must be in Reaction Control System (RCS) control
mode upon termination of a thrusting activity.

Initiating a thrust activity involves a number of complex operations on the engine and
there is considerable uncertainty about how long this initiation takes before thrust starts
accruing. This translates into uncertainty about when to switch atittude control modes, how
much thrust will be actually accrued in a given segment, and how many thrust segments
are necessary to achieve the total desired thrust. RA follows the following approach to this
problem. PS inserts thrust tokens into the plan which may not need to be executed. EXEC
tracks how much thrust has been achieved, and only executes thrust tokens (and associated
turns) for so long as thrust is actually necessary. Similarly, PS delegates to EXEC the
coordination of activity details across subsystems that are below the level of visibility of
the planner. In this example, we represent in EXEC's domain knowledge the constraint
between the engine thrust activity and the control mode of the ACS. The result is that plan
execution is robust to variations in engine setup time and in thrust achievement. It should
be noted that this delegation of labor from PS to EXEC relies on many of the capabilities
of a sophisticated procedural execution system [38; 23; 22].

4.2.2 Hybrid procedural/deductive executive

Another major cause of execution failure in the spacecraft domain is activity failure, often
due to problems with the hardware.

The design of a spacecraft fault protection is complicated by the presence of coupling and
interaction between tasks. In particular, the local recovery of a failed activity may require
the use of an action (e.g., reset the control electronics of a device) that will negatively a�ec
concurrent activities that are operating nominally (e.g., other devices that rely on continous
operations of the same control electronics).

To avoid this, the recovery system needs to take into account global constraints from
nominal schedule execution, rather than just making local �xes in an incremental fashion.
This sort of interaction may require more complex and elaborate procedures that should be
incorporated in a full recovery plan.

Examples like these drove the design of NMRA's hybrid execution system [39], which
integrates a procedural executive based on generic procedures with a deductive model-based
executive. A procedural executive (like RAPS [19], PRS [24], RPL [31], Interrap [32] and
Golog [28]) provides sophisticated control constructs such as loops, parallel activity, locks,
and synchronization which are used for robust schedule execution, hierarchical task decom-
position, context-dependent method selection, and routine con�guration management. A
deductive executive provides algorithms for sophisticated state inference and optimal failure
recovery planning. NMRA's integrated executive enables designers to code knowledge via a
combination of procedures and declarative models, yielding a rich modeling capability suit-
able to the challenges of real spacecraft control. The interface between the two executives
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Figure 8: Interacting subsystems in DS-1.
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Figure 9: Simpli�ed schematic of Cassini spacecraft propulsion system.
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Figure 10: Livingstone architecture diagram

Figure 11: Di�erent con�gurations that achieve thrust

[39] ensures both that recovery sequences are smoothly merged into high-level schedule exe-
cution and that a high degree of reactivity is retained to e�ectively handle additional failures
during recovery.

5 Model-based mode identi�cation and recon�guration

The mode identi�cation and recon�guration component of the Remote Agent architecture
is based on the Livingstone system [48]. Livingstone is a discrete model-based controller
that sits at the nexus between the high-level feedforward reasoning of classical planning
and scheduling systems, and the low-level feedback control of continuous adaptive methods
(see Figure 10). It is a discrete controller in the sense that it constantly attempts to put
the spacecraft hardware and software into a con�guration that achieves a set point, called a
con�guration goal , using a sensing component, calledmode identi�cation, and a commanding
component, called mode recon�guration. It is model-based in the sense that it uses a single
declarative, compositional spacecraft model for both MI and MR.

A con�guration goal is a speci�cation of a set of hardware and software con�gurations
(or modes). More than one con�guration can satisfy a con�guration goal, corresponding to
line and functional redundancy. The executive generates con�guration goals in the process
of plan execution and task decomposition. For example, the planner may require that the
spacecraft accumulate a certain quantity of thrust over a period of time. The executive might
decompose this activity into the con�guration goal \�re main engine," which corresponds to
spacecraft con�gurations in which an appropriate set of valves are open to enable propellant
ow into the main engine and the low-level attitude control software is properly con�gured
(see Figure 11).

Livingstone's sensing component, mode identi�cation (MI), provides the capability to
track changes in the spacecraft's con�gurations due to executive commands and component
failures. MI uses the spacecraft model and executive commands to predict the next nominal
con�guration. It then compares the sensor values predicted by this con�guration against
the actual values being monitored on the spacecraft. Discrepancies between predicted and
monitored values signal a failure. MI isolates and diagnoses the failure, thus identifying the
actual spacecraft con�guration, using algorithms adapted from model-based diagnosis [13;
14].

MI provides a variety of functions within the overall architecture. These include:

� Mode con�rmation: Provide con�rmation to the executive that a particular spacecraft
command has completed successfully.

� Anomaly detection: Identify observed spacecraft behavior that is inconsistent with its
expected behavior.
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� Fault isolation and diagnosis: Identify components whose failures explain detected
anomalies. In cases where models of component failure exist, identify the particular
failure modes of components that explain anomalies.

� Token tracking: Monitor the state of properties of interest to the executive, allowing
it to monitor plan execution.

When the current spacecraft con�guration ceases to satisfy the currently active con�gu-
ration goals, Livingstone uses its mode recon�guration (MR) capability to identify a a set
of control procedures that, when invoked, take the spacecraft into a new con�guration that
satis�es the goals.

The mode recon�guration (MR) component of Livingstone is responsible for identifying a
set of control procedures that when invoked take the spacecraft from the current state, to a
lowest cost state that achieves a set of goal behaviors. MR can be used to support a variety
of functions within the architecture, including:

� Mode con�guration: Places the spacecraft in a least cost hardware con�guration that
exhibits a desired behavior.

� Recovery: Moves the spacecraft from a failure state to one that restores a desired
function.

� Standby and Sa�ng. In the absence of full recovery, places the spacecraft in a safe state
while awaiting additional guidance from the high-level planner or ground operations
team.

� Fault avoidance: Given knowledge of current, irreparable failures, �nds alternative
ways of achieving desired goals.

Three technical features of Livingstone are particularly worth highlighting. First, the
long held vision of model-based reasoning has been to use a single central model to support
a diversity of engineering tasks. As noted above, Livingstone automates a variety of tasks
using a single model and a single core algorithm, thus making signi�cant progress towards
achieving the model-based vision. Second, Livingstone's representation formalism achieves
broad coverage of hybrid discrete/continuous, software/hardware systems by coupling the
concurrent transition system models underlying concurrent reactive languages [29] with the
qualitative representations developed in model-based reasoning [46; 15]. Third, the approach
uni�es the dichotomy within AI between deduction and reactivity [1; 3], by using a conict-
directed search algorithm coupled with fast propositional reasoning. We now discuss these
latter two points in more detail.

5.1 Representation formalism

Traditionally, model-based diagnosis has been formalized using �rst-order logic [42; 11].
First-order logic, with its expressivity and its clear declarative semantics, is certainly an
appropriate formalism for precisely characterizing model-based diagnosis. However, it is
wholly inappropriate as a representation formalism for building practical systems. On the
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Figure 12: Transition system examples

one hand, its expressivity leads to computational intractability (�rst-order satis�ability is
semi-decidable), precluding its use in a real-time system. On the other hand, �rst-order logic
by itself, with its at structure of constants, functions, and relations, provides little or no
constraint in modeling.

The main approach to resolving the above limitations of �rst-order logic has been to
use constraint-based modeling, e.g., see [7; 13; 45; 26], which directly addresses the issue
of computational tractability. In addition, system models are built compositionally from
individual component models and a speci�cation of the connections between components.
Each component model consists of a set of modes, corresponding to the di�erent nominal
and failure modes of the component. A set of constraints characterize the behavior of the
component in each of its modes. The compositional, component-based nature of the modeling
formalism enables plug-and-play model development, supports the development of complex
large-scale models, increases maintainability, and enables model reuse.

5.1.1 Concurrent transition systems

While compositional constraint-based modeling is well suited for many model-based diagnosis
applications, it has one major limitation: it has no model of dynamics, i.e., no model of
transitions between modes. Modeling mode transitions is essential for Livingstone since it
needs to track changes in spacecraft con�gurations and determine recon�guration sequences.

We overcame the above limitation by coupling compositional constraint-based modeling
with the concurrent transition system models used to model reactive systems [29]. In this
formalism, each component is modeled as a transition system consisting of a set of modes with
explicit transitions between modes. For example, Figure 12 shows the modes and transitions
of a valve and a valve driver. As before, each mode is associated with a set of constraints that
describe the component's behavior in that mode, e.g., the inflow = outflow = 0 constraint
of the Closed mode of a valve. Each transition is either a nominal transition, modeling an
executive command, or a failure transition.

Nominal transitions have preconditions that model the conditions under which that tran-
sition may be taken, e.g., in the absence of failure, a valve transitions from Open to Closed

when it receives a Close command. At any given time, exactly one nominal transition is
enabled, but zero or more failure transitions may be possible, e.g., a Closed valve may fail by
transitioning to the Stuck open or Stuck closed modes. Hence, transitions have associated
probabilities, which are used to model the likelihood of a failure occurring. Probabilistic
failure transitions can be used to model intermittency, e.g., an On valve driver may fail by
transitioning to the Resettable failure mode, but may transition back to On without any
explicit command. Nominal transitions also have associated costs, providing a way to model
the di�erent costs of command sequences. For example, the least cost way of repairing a
valve driver exhibiting Resettable failure is to Reset it, rather than turning it o� and then
on.

Components within a larger system can be viewed as acting concurrently, communicating
over \wires." Hence, as before, system models are built compositionally by connecting
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component transition system models. The resulting model is a concurrent transition system
model in the sense that a single transition of the system corresponds to concurrent transitions
by each of the component transition systems. Naturally, component transitions are consistent
with the component connections. For example, the Open/Close command input to the valve
is not directly controllable, but rather is an output from the valve driver. Hence, a valve
transition can be commanded only if the valve driver is On.

We have built a model-based programming language that supports the speci�cation of
concurrent transition system models. This speci�cation is compiled down into a restricted
propositional temporal logic formula, which is used by Livingstone's MI and MR components.
We have found that this modeling formalism has enabled us to naturally model (a) discrete,
digital systems, e.g., the valve driver; (b) analog systems using qualitative modeling [46;
15], e.g., the valve; and (c) real-time software, e.g., the spacecraft attitude controller. Hence,
the primary lesson of our experience is:

Concurrent transition systems provide an appropriate formalism for building

model-based autonomous systems.

5.1.2 Qualitative modeling

As noted above, we used qualitative representations for modeling analog systems. Sacks and
Doyle [43] have strongly criticized the value of such qualitative representations, arguing that
they can be used to analyze only a handful of simple systems. They conclude their critique
with the comment that \[Qualitative] equations are far too general for practical use." [43].

Our experience in DS-1 has been quite to the contrary. We used extremely simple quali-
tative representations, primarily based on qualitative deviations from nominal, to model the
analog systems of interest. We found that such representations were more than adequate for
Livingstone's mode identi�cation and recon�guration tasks. Furthermore, the very simplicity
of the models had important bene�ts. First, in contrast to detailed quantitative models, they
are easy to acquire. We did not have to tease out the exact form of quantitative equations,
or worry about carefully tuning numerical parameters. This enabled us to rapidly prototype
the fault protection system concurrently with hardware design. Second, qualitative models
provide a measure of robustness to design changes. For example, if the hardware designers
choose to substitute a di�erent thruster valve to produce more thrust, the qualitative model
does not change: while the underlying meaning of nominal thrust changes, the qualitative
model in terms of deviations from nominal remains the same. Third, qualitative models
allow us to use propositional encodings that enable fast inference. This was essential to
providing rapid and timely response. (We discuss this point in detail shortly.) The essential
lesson we draw from our experience is the following:

Qualitative models are appropriate for many practical and signi�cant tasks.

5.2 Reactivity and deduction

A key contribution of Livingstone is that it uni�es the dichotomy within AI between deduc-
tion and reactivity. Several authors, principally [1; 3], have argued that symbolic reasoning
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methods, such as planning, deduction, and search, are unable to bridge the gap between
perception and action in a timely fashion. For example, in discussing the construction of
reactive systems that rapidly handle the complexity, uncertainty, and immediacy of real
situations, Agre and Chapman claim that \Proving theorems is out of the question." [1].
Rather, the argument goes, the right way to construct reactive systems is to compile out all
the inference into a network of combinational circuits, possibly augmented with timers and
state elements, leading to the subsumption architecture [3]. But is this solution adequate for
all types of reactive systems? More importantly, is the intuition, that deduction and search
can play no role in reactive systems, even correct?

5.2.1 Fast deduction and search

Consider, �rst, the question of the adequacy of the above thesis. Autonomous system,
such as deep space probes, Antarctic and Martian habitats, power and computer networks,
chemical plants, and assembly lines, need to operate without interruption for long periods,
often in harsh environments. In such systems, rapid correct response to anomalous situations
is essential for carrying out the mission. Responding to any single anomalous situation using
a hardwired network is plausible. However, as the length of time for which autonomous
operations is desired increases, the combinations of anomalous situations that may arise
grows exponentially. Constructing a reactive network that responds correctly to this cascade
of failures is a truly daunting task. The model-based paradigm embodied in Livingstone,
with its ability to identify multiple failures and synthesize correct responses directly from a
compact declarative model, provides a much more practical solution.

But what of the concern that search and deduction are su�ciently time-consuming that
responses at reactive time-scales are not possible? Livingstone addresses this concern with
a combination of techniques (see [48] for details). We formulate both MI and MR as com-
binatorial optimization problems: MI is formulated as �nding the most likely transitions
that are consistent with the observations; MR is formulated as the least cost commands that
restore the current con�guration goals. Livingstone solves these combinatorial optimization
problems using a conict-directed� best-�rst search, coupled with fast propositional inference
using unit propagation. Empirically, the use of conicts dramatically focuses the search,
enabling rapid diagnosis and response. While unit propagation is an incomplete inference
procedure, it su�ces for our applications. The reason is that we use causal models, with few
(if any) feedback loops, so that unit propagation is complete or can be made complete with
a small number of carefully chosen prime implicates [9].

5.2.2 Truth maintenance

Livingstone's performance is further signi�cantly enhanced by using a truth maintenance

system, called the Incremental Truth Maintenance System ITMS [35], which provides the
propositional inference capability. The ITMS caches inferences during search, so that very
little new inference needs to be done at each node in the search tree. The ITMS is a

�A conict is a partial assignment such that any assignment containing the conict is guaranteed to be

infeasible.
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variant of the more traditional LTMS [30; 16] that optimizes context switching. Context
switching involves simultaneously deleting and adding clauses to the TMS database. The
main drawback of the LTMS labeling algorithm is its conservative approach to context
switching: all inferences that depend on a deleted clause are �rst removed, even if these
inferences continue to hold in the new context. The ITMS takes a more aggressive approach
to context switching by �rst adding clauses and propagating, and only then deleting clauses,
thereby retaining signi�cantly more inferences across the context switch.

Livingstone's use of an ITMS is in sharp contrast to other model-based diagnosis systems
[13; 14; 10; 18] that use a fundamentally di�erent type of truth maintenance system, called
the ATMS [12]. Concerns about the e�ciency of the LTMS lead de Kleer to introduce the
ATMS and write that JTMSs and LTMSs \. . . have proven to be woefully inadequate. . . they
are ine�cient in both time and space." [8]. The advantage of the ATMS is its ability
to switch contexts without any label propagation. However, this comes at the cost of an
exponential time and space labeling process, making it inapplicable for embedded, real-
time systems. This is not surprising since the original ATMS was designed for problems
that require �nding all solutions, e.g., envisionment, while Livingstone instead focuses on a
small number of most preferred solutions. More recently, various ATMS focusing algorithms
have been developed to alleviate the exponential cost of labeling by restricting ATMS label
propagation to just the current context [21; 17]. Precise empirical comparisons between
model-based diagnosis systems based on focused ATMSs and those based on LTMSs/ITMSs
are unavailable. However, our experience with Livingstone on a standard diagnostic suite
have been exceedingly favorable, and appear to be comparable to the very best focused
ATMS-based diagnosis engines.

The primary lesson of the above discussion is the following:

Search and deduction are often necessary in a reactive system. Furthermore,

search and deduction can be carried out reactively.

5.3 Summary

Livingstone is a discrete model-based controller that provides the mode identi�cation and
recon�guration capability within the Remote Agent architecture. Our experience with Liv-
ingstone has provided the following technical lessons:

� Multiple tasks can be carried out using a single model.

� Concurrrent transition systems provide an appropriate formalism for building model-
based autonomous systems.

� Qualitative models are appropriate for many real-world tasks.

� Search and deduction are often necessary in a reactive system.

� Search and deduction can be carried out reactively.
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6 Lesson from technology insertion

The strict separation between modeling and problem solving heuristics also addresses an-
other lesson learned from the DS1 experience. While AI planning research has so far con-
centrated on problem-solving performance, in mission-critical applications it is validation of
the problem-solving system that takes a much more prominent role. In our interaction with
spacecraft engineers the question that is most often and insistently asked is \How can we be
sure that your software will work as advertised and avoid unintended behavior?". Indeed,
this is a question that applies to the development of all aspects of mission-critical embedded
software systems, AI based or not. However, systems like Remote Agent promise complete
autonomy over a much wider variety of complex situation than it was previously possible.
On one hand this makes validation of these systems much harder than before. On the other
hand, the declarative nature of AI technology allows the inspection of the models and the
deep understanding of the behavior of the system in a way that is unprecedented with respect
to traditional software development approaches.

A clean separation between models and heuristics allows the integration of AI technology
to match much better to the realities of the development of large software systems. In such
endeavours knowledge is distributed across people with di�erent backgrounds and skills. In
spacecfaft mission development, the knowledge of the behavior of the hardware and the
speci�cation of the procedures needed to achieve the mission goal resides in the system

and mission engineering organization. Ultimately it is their responsibility to certify that
hardware and software guarantee the mission requirements and speci�cations. The ability
to directly inspect and understand actual ight software is enormously facilitated by the
use of declarative methods. However, it is important to make sure that system and mission
engineers can really focus on what they are primarily interested with (guaranteeing that
requirements are met) and not on the details of how the reasoning engines need to manipulate
the models in order to produce solutions e�ciently. A strict separation between models and
heuristics will allow non-AI specialists to understand the knowledge enbedded in the system
without having to be experts in AI problem solving methods.

We believe that inspectable representational techniques and tools to automatically ana-
lyze models and automatically synthesize problem solving heuristicsis are important research
areas to widen the applicability of AI techniques to real-world applications.
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